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Abstract. We present an approach for facilitating user interaction on
mobile devices, focusing on camera-enabled mobile phones. A user inter-
acts with an application by moving their device. An on-board camera is
used to capture incoming video and the scrolling direction and magnitude
are estimated using a feature-based tracking algorithm. The direction is
used as the scroll direction in the application, and the magnitude is used
to set the zoom level. The camera is treated as a pointing device and
zoom level control in applications. Our approach generates mouse events,
so any application that is mouse-driven can make use of this technique.

1 Introduction

Mobile devices currently support navigation through a joypad/direction keys or
scroll bars on touch-sensitive screens using a stylus-based pen. Although these
modes of interaction are sufficient for small sized content, more intuitive tech-
niques are required for navigating more complex data. It is difficult to use these
techniques to navigate a full-sized Web page or to select an item from dozens of
choices in a list box of messages, photos, audio files, phonebook entries or other
mobile content. On devices with larger form-factors, additional keys provide a
better user experience since keys can be dedicated to specific tasks such as page
up/down and zoom level. Smart phones cannot make use of such keys due to lim-
ited physical space. Stylus-based interaction for navigation is an alternative, but
requires two-handed interaction and has been shown to cause additional atten-
tional overhead in users [1]. Consequently, alternative interaction techniques are
desired. Other sensors could be added to mobile devices such as accelerometers
(e.g., Samsung’s SCH-S310 smartphone), but these can be difficult to integrate
into existing consumer-level devices at both the software and hardware level.
In addition, such sensors are known to have error buildup over time since some
infinitesimal acceleration is always measured.

To address these problems, we propose using the camera sensor as the input
device. Feature-based tracking of the incoming video is used to estimate both
motion direction and magnitude. The direction estimates are used for scrolling
while the magnitude of the physical movement can drive the current zoom level
in an application or be used for shake detection. This approach provides a more
natural user interaction maximizing the use of the display, minimizing atten-
tional overhead to the user, and permitting one-handed interaction. This ap-
proach does not preclude the use of a joypad, and can be used as an extension
of joypad-based interaction, where the joypad could be used for fine-grained se-
lection. We tested our approach on an image-browsing task in a photo browsing



Fig. 1. A tracking algorithm is used to determine movement direction and magnitude.
These are then treated as mouse events by the application’s event handler, and the
user’s view is updated.

application, as well as in a document viewer and in games. In informal tests,
users preferred our solution to a joypad-based navigation. Joypads and scroll
buttons are adequate for navigation of small datasets on limited sized displays,
but not for large or complex data.

2 Related Work

Mobile camera-based tracking has been researched by several groups. Rohs et al. [2]
perform tracking based on dividing incoming camera frames into blocks and then
determine how the blocks move given a set of discrete possible translations and
rotations. Our algorithm is instead based on tracking individual corner-like fea-
tures observed in the entire incoming camera frames. This allows our tracker to
recognize sudden camera movements of arbitrary size, as long as at least some
of the features from the previous frame are still visible, at the trade-off of not
detecting rotations.

Augmented reality research on mobile camera-based tracking systems in-
cludes that of Möhring et al. [3], who track a color-coded 3D marker to estimate
3D camera pose, after an initial calibration step. Our work is instead focused
on new user interfaces using computed 2D motion, so we do not require mark-
ers or user calibration for tracking. Drab et al. [4] present a computationally
inexpensive tracking system, however their system has problems with repeating
textures and requires scenes with high dynamic range which ours does not. Beier
et al. [5] present a marker-less tracking algorithm, however it does not run on
mobile devices as ours does and also requires matching with known 3D models,
which we do not require.

Additional related work includes the Mosquito game available for the Siemens
SX1 mobile phone, among others that have been created since then for many
smart phone platforms. While camera motion is indeed estimated in these games
to translate sprites accordingly, it should be noted that the detected motion does
not need to be exact as the sprites are rendered on top of the video but not
attached to any feature. As such, only approximate motion is required. Since
our tracked motion needs to match the user’s physical motion exactly, a higher
degree of accuracy is required which from our testing is not present in current
commercial camera motion tracking-based games. Recently [6] have created the
first Kalman-based tracker for mobile devices. Kalman tracking yields higher



Fig. 2. Tracking algorithm and direction estimation flowchart.

quality motion estimates but has higher computational requirements and needs
a more complex implementation than in our work.

Prior work on speed-dependent automatic zooming on mobile devices has fo-
cused on performing zoom and/or panning using either additional hardware or
sensors. Igarashi and Hinckley [7] performed speed-dependent automatic zoom-
ing by creating equations based on mouse motion which determine whether to
zoom in or out. Recently, Cockburn et al. [8] have performed extensive user
studies to find empirical values for the equations relating speed and zoom levels
for mouse motion. Other pointer device based scrolling techniques include the
Alphaslider [9], the FineSlider [10] and the Popup Vernier [11]. Those works fo-
cused on how to effectively select an item from a list of a large number of items.
An extended scroll bar component that allows the user to change the scrolling
speed was used. Our approach can be used as an alternative in instances where
a pointing device is not available, such as on a mobile device.

Our work is also similar to the scroll [12], and peephole [1] displays works
and work on tilt-based interaction [13, 14]. In these works, the goal was to per-
form scrolling on mobile devices in a more intuitive fashion by using additional
sensors. Scroll-detection sensors that were used included both mechanical and
optical mouse sensors, position and orientation sensors, and ultrasonic transmit-
ters/receivers. While additional sensors were required in those works, we use only
the camera as the direction sensor instead of adding new sensors. Doing so al-
lows for regular camera-equipped smart phones to have an additional interaction
modality without modifying the phone.

Other hardware-based solutions to scrolling come from the commercial do-
main. Apple’s iPod, while not performing zooming, makes use of a touch-sensitive
scroll wheel whose scrolling speed depends on the number of songs in a play list,
to maximize display usage. On other mobile devices such as cell phones, touch
screens are commonly used to address display size limitations. Touch screens
can allow users to interact and scroll through their data more effectively than
using buttons as the stylus can just be dragged down a scrollbar. However, touch
screens have the disadvantage of not permitting one-handed operation.



3 Camera-based Movement Estimation

Our approach is to use the mobile phone’s onboard camera as the source of input.
The user’s physical movement of the device is captured in incoming video, which
is analyzed to determine scroll direction and magnitude. The detected direction
is sent to the event handler exactly as a corresponding mouse event, while the
magnitude is used to specify the current scroll level. Figure 1 shows an overview
of our system.

Correctly interpreting the observed motion from the camera’s incoming video
requires accurate tracking. To determine the motion direction, a feature-based
tracking algorithm is used. To determine the magnitude of the physical move-
ment, motion history images (MHI) [15] are used, which were originally used for
performing action and gesture recognition. Our tracking algorithm provides four
directions as application-level events, similar to mouse movement: up, down, left
and right, in the camera plane. The magnitude is also passed as an event, where
two states are possible: motion magnitude increasing or decreasing. The rest
of the application remains the same as the only changes are the cause of the
events passed to the event handler. This allows applications to use the camera
easily, without any knowledge of the underlying tracking algorithms or camera
hardware.

High-level Algorithm Description: The tracking system was implemented
on the Symbian OS. The process diagram of the tracker is presented in Figure 2.
Two frames are grabbed, n and n−1. Edge detection is performed on both frames
using the Sobel filter. The thresholded absolute values of the x and y derivatives
are used as features as they peak in corner-like regions. Feature matching is
performed between frames using template matching with 15x15 search windows.
Direction voting is performed using variables, and the final decision on motion
estimation is performed every 4 frames. This allows several frames to ‘vote’ on
the motion, keeping the scrolling from being incorrect due to any errors in other
parts of the system.

Feature Detection: Traditional features include edges and corners. However,
edges are not significantly temporally coherent and corner features are too com-
putationally expensive to find at many image locations while retaining real-time
performance. Instead, corner-like features are detected using image gradient in-
formation (Equation 1).

S(x, y) = (G2
x + G2

y) (1)

Gx(x, y) = ∂I
∂x ≈ sobelx(x, y), Gy(x, y) = ∂I

∂y ≈ sobely(x, y) (2)

S(x, y) is the Sobel operator and the Sobel functions denote convolution with
the x and y components of the Sobel kernel. All corners cannot be detected
using the Sobel operator; however, it provides a useful first-step culling of pixels
for additional processing. Frame n is filtered using the Sobel x and y filters.
The Sobel operator is then applied to every pixel in scanline order. If S(x, y) is



greater than an edge threshold, the pixel at (x, y) in frame n is labeled a feature.
Once k features are detected the Sobel operator is no longer applied, with k = 50
providing good results. The list of detected features is then passed onto the next
step, template matching.

Template Matching: Template matching alone is not reliable since only image
pixel difference errors are used and neither sensor noise nor lighting variations
are modeled. Template matching is used in this algorithm because it is computa-
tionally inexpensive and provides useful match estimates. Matching is performed
for each feature detected in Frame n. For each feature, the 15x15 pixel neighbor-
hood around the feature is tested for image similarity using the sum of squared
differences (SSD). 15x15 sized features were chosen as this size is large enough
to capture visually distinct regions and significant intra-frame physical motion.
Let tf denote a 15x15 pixel sized template image consisting of the pixel neigh-
borhood at (i, j), where feature f was detected in Frame n. Then, to find the
closest match in Frame n − 1, we can use the following equation (equivalent to
SSD in the case of a non-changing image and template):

min
(x,y)∈N

M(x, y) =
7∑

k=−7

7∑

l=−7

tf (k + 7, l + 7)f(x + k, y + l) (3)

where N is the 15x15 pixel neighborhood around (i, j). The location of the
closest match is found by testing every offset around location (i, j) and comparing
the 15x15 sub-image there with the 15x15 sub-image from the feature’s pixel
neighborhood. The matching is performed from the current frame to the previous
frame instead of vice versa since a feature detected in Frame n− 1 may not be
detected in Frame n.

Direction Estimation: The direction cannot be estimated by simply count-
ing the most dominant template matching direction amongst all features. Such
estimation would be temporally incoherent since neither the feature detection
nor template matching component is perfectly coherent. To remove temporal
incoherencies, the estimated directions of the matched feature locations are tem-
porally filtered. For each frame, the most dominant direction is computed and
a counter for that direction is incremented. For each direction, a counter is ini-
tialized at zero. After m frames, where m is typically between 3− 5 frames, the
counter with highest count is chosen as the estimated direction with other coun-
ters reset to zero. Only a small amount of temporal filtering is needed since the
features are individually robust. The direction estimation fails if the camera is
moved largely between frames since at least one feature from the previous frame
must be visible, as in other template matching based algorithms.

Determining Camera Motion Magnitude: The directions of dominant
camera motion are computed using the tracking algorithm, but their magni-
tudes are not known accurately. Camera motion magnitude must be calculated
accurately to determine how to adjust the scroll speed in applications that need
zoom control. We use motion history images (MHI) [15] to estimate camera



motion magnitude. Motion histories are encoded in single images such that a
single image can be used for simple, robust and computationally inexpensive
gesture recognition. An MHI is computed by performing background subtrac-
tion between the current and previous frames. At locations where the pixel values
change, the MHI is updated by decrementing by a pre-defined constant amount.
By averaging the intensity values of the MHI, the average camera motion magni-
tude is estimated. The following equation calculates the MHI’s value at position
(x, y) in the camera image at time t:

HT (x, y, t) =
{

τ if D(x, y, t) = 1,
max(0, HT (x, y, t− 1)− 1) otherwise (4)

where HT is initialized to be 0 in the first frame and D(x, y, t) denotes an image
difference between frame t and t−1, with τ being the number of frames of motion
that the MHI should represent. In this manner, the MHI compactly represents
the motion magnitude from the incoming video, with areas ‘lighting up’ when
significant motion is detected and the whole MHI fading to black if no motion
is detected. The simplicity of the MHI calculation makes it amenable for use in
driving the scroll level and velocity as well as camera shake detection (Section
5).

4 Results

Our algorithm’s frame rate is 10fps on our test hardware, a Nokia 6630 smart-
phone, with 1 motion magnitude and motion direction update every 3−5 frames,
with more frequent updates possible at the expense of accuracy. In our experi-
mentation, only smooth walls result in complete tracking failure since temporally
coherent features are not found. Otherwise, the tracker’s performance matches
users’ physical motion at a responsive rate with no errors in typical indoor and
outdoor environments.

Motion estimates computed are accurate for user interaction, never estimat-
ing the wrong motion direction even when the device is abruptly switched in
directions. The motion magnitude is also accurate, mainly representing the im-
mediate past since is is not recomputed often, which turns out to be suitable for
automatic zooming. The biggest limitation of our algorithm is that detectable
physical motion speed is limited since intra-frame matching is performed and
part of the previous frame must be visible in the current frame to establish
feature correspondences.

To measure the accuracy and performance of our algorithm, we compared our
tracking algorithm with the Kalman filter-based tracker from [6]. The Kalman
tracker has higher motion estimation accuracy, as expected, since the Kalman
filter greatly improves the quality of intra-frame matching. However, the com-
putational requirements are significantly greater since several matrices must be
multiplied and inverted per frame. On devices with limited computational re-
sources, our algorithm provides sufficient motion and velocity accuracy for user
interaction with many leftover cycles for intense applications such as 3D games



Fig. 3. Picture browser application. The application automatically adjusts the zoom
level to help the user browse.

(Section 5) at the trade-off of more limited accuracy since the temporal filtering
in our algorithm cannot match a Kalman filter.

A general issue with camera-based mobile device user interfaces is that the
user’s physical environment may have very limited space. In such situations,
it may be advantageous to provide a ‘clutch’ to turn the tracking on/off. This
would emulate the act of lifting a mouse once the edge of a desk is reached
in traditional desktop interaction. In our informal testing we did not provide a
clutch, however in commercial implementations this is a consideration to keep
in mind. Another general issue is that all camera-based user interfaces require
adequate light for tracking. Problems can arise particularly for a mobile device in
low lighting conditions if the device has an automatic ‘night mode’ as incoming
images will already be processed and may be too noisy. In dark environments,
applications should default to joypad-based interaction.

5 Applications

We implemented several test applications to demonstrate our algorithm’s strengths
and limitations. In general, any mobile application that requires scrolling and/or
zooming could make use of our approach provided that an on-board camera is
present.

Zooming Photo Browser: As cameras become more widespread on mobile
phones and storage size increases, managing photos becomes a more difficult task
for the user as large amounts of information must be viewed with limited input
modalities. Current typical photo viewer applications show photo thumbnails as
lists, grids, or 3D carousels. Since image selection and scrolling are done with
the joystick, the amount of time a user needs to browse their images is directly
related to the number of images that they are browsing.

Our photo browser test application (Figure 3) shows thumbnails of the user’s
photos in a grid layout. The user can scroll in four directions (up, down, left,
right, in the camera plane) by physically moving the mobile device. In this case it
is difficult to view all the images as some zoom control is required when looking
for a particular image. If the zoom level is not properly set, it is difficult for a
user to select a particular image from the set as the scrolling will be too fast. To
address this problem, we used the technique introduced in [7]. Adaptive zooming
based on the magnitude of the user’s physical movement keeps the scroll speed



(a) (b)

Fig. 4. (a) Camera-based interaction in a document viewing application. (b) Mapping
physical motion to viewing direction creates the illusion of a window into an environ-
ment.

virtually consistent, allowing the user to browse more thumbnails by only moving
the device faster.

Document Viewer: Scrolling a document is a commonly difficult task on mo-
bile devices. For instance, web content designed for desktop computers is much
vertically longer since mobile devices have narrower screens. In addition, joy-
stick scrolling is especially difficult when scrolling line-by-line. An alternative is
to add an extra hardware button for scrolling. However, an extra button is not
a preferable solution for mobile device manufacturers due to the lack of extra
physical space on the device along with additional manufacturing costs.

In the document viewer prototype application we implemented (Figure 4 (a)),
the user can vertically scroll documents by moving the device. The scroll speed
depends on how fast the user moves the device, which is much more intuitive
than changing scrolling speed depending on how long the user presses the joystick
or via menu options and settings. One issue we identified in this application is
that at some point, the user has to move the device more than they can reach.
For example, if the user is scrolling to the right, at some point they will reach
the physical limit of their arm’s motion. To address this problem, we use the
joystick as a ‘carriage return’, which scrolls the document to the beginning of
the next line and allows the user to move their arm back to the left again. After
a carriage return, all tracked motion except movement to the right is ignored.

3D Game Interaction: Creating an immersive 3D experience is difficult on
mobile devices due to the limited display size. The most immersive experiences
are typically created using a combination of large displays reducing peripheral
vision as much as possible and/or virtual environment navigation tied to the
user’s physical motion. In our prototype (Figure 4 (b)), we map the user’s phys-
ical motion to the view-point to create the illusion of a window into a 3D world.

Our renderer loads standard Quake IIITM or Quake III ArenaTM maps. Tex-
tures, light maps, curved surfaces and lighting calculations are disabled for per-
formance. The rendering is done using the OpenGL ES implementation available
in the latest Symbian OS-based Series 60 SDK. Pre-computed vertex lighting and
fixed point calculations are used to improve performance due to the lack of a
floating-point unit on our test hardware. The renderer is able to realistically ren-



(a) (b)

Fig. 5. (a) Players move the device left and right to aim, and shake the device to
launch a bubble. (b) A jump command is issued by shaking the device at the correct
time to avoid tripping on the hurdle.

der lit virtual environments with several thousand polygons per scene at 3− 10
frames per second, depending on the environment that is chosen.

Navigation of the virtual environments is performed with a combination of
physical motion and keypad presses. Actual movement in the environment is
controlled by the keypad. The user looks around in the scene by physically mov-
ing the device around their body in the directions that they would like to look.
We map the tracked camera motion directions to a trackball as in traditional
mouse-based 3D interaction. The combination of detailed environments, camera-
based control and interactive frame rate create a mobile user experience closer
to that using additional hardware or larger displays.

2D Game Interaction: Camera-based user interaction can be used to enhance
2D games as well as those that are 3D. Camera motion can be used to add an
additional element of interaction in games that require precise movements or
very well-timed button presses. We created puzzle and action game prototypes to
investigate these ideas using the camera motion and shake detection algorithms
presented.

We modified the open source Series 60 port of the ‘Frozen Bubble’ puzzle
game (http://fb–s60.sourceforge.net/), switching the game control from using
the keypad to using the camera (Figure 5 (a)). In our version, the user moves
their device left and right to aim and performs sudden shakes to launch their
bubble. This has the effect of significantly changing gameplay as careful arm
motions are now required to aim, instead of a number of button presses, which
increases the excitement as the game is now more physically-based.

We created a camera-based action game prototype as well. Using sprites and
artwork from Konami’s ‘Track and FieldTM’ game for the Nintendo Entertain-
ment System, a new game (Figure 5 (b)) was created. A runner must jump over
a never-ending number of approaching hurdles. To jump, the player must time
the shaking of their device correctly so that the character does not crash into
hurdles. Relying on the camera exclusively for input results in a game that is
very simple to learn and understand but difficult to master, providing a new type
of game. Shake detection is performed by thresholding the average intensity of
the computed MHI (Section 3).



6 Conclusions and Future Work

We introduced a new approach to improve the user experience on camera-
equipped mobile devices. A feature-based tracking algorithm was presented to
detect both physical motion direction and magnitude to permit one-handed phys-
ical movement based interaction. A camera was chosen since cameras are now
widely available on mobile devices and are very powerful sensors that can be
used without introducing new sensors. We demonstrated our approach in sev-
eral applications including a document viewer, photo collection browser and some
games. In the future, we would like to perform user studies to determine how to
improve user interaction further using mobile cameras.

While our tracking algorithm is computationally efficient and works well in
practice, some situations cannot be handled. Severe lighting differences will cause
the template matching to stop working properly. Motion in front of the camera is
ambiguous and can affect tracking results as it is impossible to tell whether the
camera is moving or not. Shadows may confuse the tracking system, but there
are known techniques for robust tracking in the presence of shadows that will
be incorporated into the tracking algorithm once additional processing speed is
available.
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