
User-guided Pedestrian and Object Removal

Antonio Haro
Nokia

425 West Randolph Street
Chicago, IL 60606, USA
antonio.haro@nokia.com

Abstract

Street-level image collections now exist for a number of
locations around the world. While the focus is on capturing
streets and buildings, pedestrians are commonly captured.
Pedestrian faces are identified and blurred in different sys-
tems to address privacy concerns but leave their possibly
identifiable bodies intact. In this paper, we present a user-
guided approach to fully remove pedestrians and undesir-
able scene objects. Both are fully removed given a user
created removal mask with our system’s gui and using suc-
cessive image frames with an image inpainting-inspired ap-
proach.

1. Introduction
Street-level image collections capture an increasing

amount of data at high resolutions. These collections have a
wide range of applications including real estate and tourism,
among many others. While image capture vehicles focus
on buildings and roads, pedestrians are inevitably captured
presenting privacy concerns in some countries.

Privacy can be increased by finding human faces in
street-level image collections and blurring them [9]. How-
ever, pedestrian bodies are not processed which can be iden-
tifiable even without a face. In addition, temporary or un-
desirable objects captured during data collection can lower
the final user experience or usability of the imagery.

In this paper, we present an approach for completely re-
moving pedestrians and undesirable objects with minimal
user interaction with a simple gui. The gui helps users cre-
ate selection layers comprised of simple shapes to quickly
and accurately label removal regions. Users are not required
to have image editing experience to remove pedestrians or
objects. The graphical operations to actually remove pedes-
trians and objects from selected regions are fully automatic.

Multiple source images are captured by a vehicle (Sec-
tion 3.1) with high overlap between successive images. The
selection regions provided by a user with our simple gui

are used along with the prior and next image frames to re-
move pedestrians and objects. The approach samples from
regions behind pedestrians and objects after performing im-
age registration (Section 3.3).

Separate algorithms are used to remove pedestrians and
objects (Sections 3.4 and 3.6) from scenes since pedestrian
image regions are typically comprised of multiple image
patches with high intensity gradients and large color differ-
ences, unlike objects which can be more aggressively seg-
mented. Both algorithms use graphcut-based image seg-
mentation to minimize the size of the user’s removal region
by copying patches from the prior/next frames in a visually
coherent manner. Once the removal region is minimized, an
image inpainting algorithm (Section 3.5) is used to fill the
remaining uncopied regions.

The removal algorithms and selection gui comprise a
system that removes pedestrians and objects with results
comparable to skilled graphic artists in a fraction of the time
and without requiring prior skills. Our use of manual selec-
tions, graphcut-based image segmentation, inpainting and
multiple frames allows our approach to handle challenging
cases such as crowds of pedestrians at traffic intersections.

2. Previous work
Flores et al. [8] remove pedestrians from street-level im-

agery automatically. Their approach differs from ours in
the use of an automatic pedestrian detection algorithm and
in-place image patch copying. Our removal process is in-
stead based on graphcut-driven image segmentation using
multiple frames. In addition, our method uses a minimal in-
painting and context aware-fill to ensure removal in scenes
without large planar objects to aid in registration and avoids
copying incoherent image patches. Also, their approach
is fully automatic whereas ours uses manually defined re-
moval regions. These take additional time to define but help
handle challenging situations such as crosswalks and jay-
walking pedestrians as well as undesirable scene objects.

Image editing programs provide tools to help users man-
ually remove objects from images. However, these require

50978-1-4673-5674-9/12/$31.00 ©2012 IEEE

user expertise and may be time intensive. Criminisi et al. [5]
combine texture synthesis and inpainting approaches to au-
tomatically remove image regions within a user’s selection
area. The fill region is successively reduced by sampling
image patches according to a visual coherence priority or-
dering along the fill boundary.

Graphcut-based approaches have been presented for var-
ious domains including texture synthesis (Kwatra et al.
[10]) and image segmentation (Rother et al. [13], Li et al.
[11]). These approaches sample image patches directly in-
stead of infilling to preserve detail present in the original
image. Our pedestrian and object removal algorithms simi-
larly use graphcuts during removal to minimize infilling.

3. Approach

Figure 2 shows an overview of our approach. Users man-
ually select pedestrian and unwanted object regions in indi-
vidual frames from a previously captured sequence using a
custom gui. Multiple frames are registered and merged to
maximize image patch copying from nearby frames while
shrinking the user’s selection regions. Finally, an infilling
algorithm is used to fill the small noise-like mask regions
that remain in the merged frame. The resulting image is
free of pedestrians and objects in regions selected by the
user.

3.1. Image capture

Data is collected from a mobile system composed of
a 360◦ LiDAR sensor (Velodyne HDL-64E), six high-
resolution cameras, a Ladybug 3 camera, GPS, Inertial
Measurement Unit (IMU), and Distance Measurement In-
strument (DMI). The Ladybug 3 covers more than 80 per-
cent of a full sphere, with six high quality 1600x1200 Sony
CCD sensors, and provides up to 12 MP images at 15
Frames Per Second (FPS). All of these sensors are geo-
referenced through a GPS and IMU. Spherical images are
captured at 4 meter intervals which provides significant im-
age overlap for multi-frame registration.

3.2. Removal region selection

We created a single user gui for pedestrian and object
removal (Figure 1) using simple shape selections. Users
select pedestrian regions (Figure 1a) using different brush
tools including constrained ellipsoidal selection or freehand
brushes mimicking pedestrian dimensions. Undesirable ob-
jects can be selected in the same user interface (Figure 1b)
and users can toggle selections on/off to ensure that all re-
gions of interest are covered before the two removal algo-
rithms are run in parallel on the user’s selections. The gui
tools help users accurately select removal regions without
overselection for best results.

(a) Pedestrians (b) Street light

Figure 1. Interactive removal region selection using ellipsoidal,
line and freehand brushes.

3.3. Image registration

Improved pedestrian and object removal is possible us-
ing multiple frames. This enables sampling from overlap-
ping scene regions before infilling. Our data capture (Sec-
tion 3.1) provides a small baseline between images enabling
multiframe registration. For a particular frame n, two ho-
mographies are computed, one relating frame n−1 to n and
another from n+1 to n. Each homography is computed us-
ing SURF [2] features matched between frames using multi-
ple RANSAC [7] iterations with increasingly tighter bounds
on the homography.

3.4. Pedestrian removal

After registering frames n− 1 and n+1, pedestrians are
separately removed in the user’s selection region in frame
n. A list of pedestrian regions is created using connected
components [4]. The corresponding selection region from
frames n−1 and n+1 is copied into new sub-images (n−1)′
and (n + 1)′. GrabCut [13] segmentation is used on each
sub-image with the user’s selection region as its mask to re-
move extraneous or incorrect regions that do not align with
frame n. However, this only identifies overcopied image
regions such as pedestrian body parts, possibly keeping re-
gions from frame n.

Frame n is processed separately to create a fallback re-
sult. User selected pedestrian removal regions are filled us-
ing a coarse-to-fine infilling algorithm (Section 3.5). Pixels
from the resulting output are used to determine when pixels
from frames (n − 1)′ and (n + 1)′ are visually incoherent.
This is possible if frames n − 1 or n + 1 are misregistered
or in the case of high scene complexity.

The infilled result is combined with frames (n− 1)′ and
(n + 1)′ to generate the “merged frame” in Figure 2. The
merged frame consists of a complete removal of all pedes-
trian regions maximizing large patch copying from neigh-
boring frames and minimizing the infill region. The infill
region is minimized since infilled regions have lower detail
than those from copied image patches.

51

Figure 2. Pedestrian removal overview: Frames n− 1, n, n+ 1 and mask for frame n are provided as input. The resulting merged frame
and minimal fill mask are used to produce the final processed frame n output.

The merged frame and minimal infill mask are generated
by individually comparing pixels from (n−1)′, (n+1)′ and
the infilled-only result. The absolute difference between
pixel s in the infilled-only result and pixel s in each of the
two frames is calculated. The pixel with minimum differ-
ence is used in the merged frame, unless its color value dif-
fers from the infilled result by more than a threshold (50
in our implementation). If the threshold is exceeded, it is
marked as a pixel that needs to be infilled.

Figure 2 shows the user’s original selection mask and
the resulting minimal infill mask (“min mask”). The ma-
jority of the pixels in the user’s mask region are sampled
and not infilled since the method favors copying entire im-
age patches from registered neighboring frames. Finally,
the merged frame is used as input to our infill algorithm
(Section 3.5) using the minimized mask as the fill mask.
Reducing the fill mask before infilling to resemble lines and
noise also has the advantage of improving the performance
of the infill algorithm since it performs best with smaller
noise-like fill regions.

3.5. Infilling

Our infilling algorithm is an extension of Criminisi et
al. [5] to better handle pedestrian/object regions at differ-
ent scales in a single frame. Separate Gaussian pyramids
are created for the merged frame, minimal infill mask and
the output image. At the top level of the output image’s
pyramid, the merged frame’s fill regions are horizontally
interpolated to minimize interpolation artifacts. At all other
levels of the output image pyramid, the algorithm proceeds
in a coarse-to-fine manner propagating each level’s output
downward. Infilling is performed for each pyramid level us-

ing the corresponding input image and mask from the other
pyramids.

3.6. Object removal

Object removal is identical to pedestrian removal up to
the computation of the merged frame and minimal infill
mask. The algorithm copies even larger image patches than
possible for pedestrians using graphcut-based techniques to
find patches to copy from frames n−1 and n+1 into frame
n. Using this approach to remove pedestrian regions would
cause body portions from multiple frames to be copied into
frame n which is undesirable.

In each object removal region, the largest image patches
possible are first copied from the previously registered
frames n − 1 and n + 1 into n in a visually coherent man-
ner. This is framed as a graphcut problem where pixels are
assigned as belonging to a source or sink using the max-
flow algorithm [3]. Merging successive frames is similar to
the patch compositing operation of Kwatra et al. [10]. For
each object removal region, we create a graph comprised of
overlapping pixels from frames n − 1 and n + 1. Terminal
weights sized∞ are attached from each graph node on the
left side of the removal region to the source. Similarly, ter-
minal weights sized ∞ are attached from each graph node
on the right side of the removal region to the sink.

Horizontal and vertical gradients are computed for pixels
within the current object removal region. Gradients are used
to set the edge weights in the graph. We use the enhanced
edge weights from [10]:

D(G, s, t) = ||G(s)||+ ||G(t)|| (1)

52

(a) (b)

(c)

Figure 3. Object removal results.

W (s, t, A,B) =
||A(s)−B(s)||+ ||(A(t)−B(t)||

D(Gd
A, s, t) +D(Gd

B , s, t)
(2)

where A and B represent registered frames n − 1 and
n + 1 respectively and W is the edge weight between pix-
els s and t between the two frames. A(s) and B(s) are the
color values for pixel s in each frame and Gd

A and Gd
B are

the gradients in direction d in each frame. Max-flow is com-
puted for this graph to find a seam boundary between pixels
labeled source and sink in the overlapping removal region.

The computed seam shows how to merge the two adja-
cent frames but not which frame should be considered the
left or right side of the seam. In texture synthesis, there
is no ambiguity because the two sides of the seam overlap
only along edges. In this multi-frame case, the two sides
of the seam completely overlap since they have been pre-
viously registered. The approach determines left and right

frame assignment by finding which configuration has the
minimum summed gradient magnitude along the computed
seam boundary.

Once the frames for the current object selection region
are merged into a new imageM , the original object removal
selection region is used as input to automatically identify
any object parts that remain in the selection region. Any
remaining parts will be much smaller than the original user
selection so only this minimal area is infilled. The intuition
is that the pixels in M along the user’s selection boundary
are probably background pixels if the prior step computed
a good seam. This process uses a similar graph and edge
weights as in Li et al. [11] again followed by max-flow.
Computing max-flow on this graph has the effect of push-
ing the mask inward where possible by identifying patches
on the mask boundary that can be directly copied from the
background.
K-means clustering [6] is used with 64 clusters for

foreground regions (F) and background regions (B) with
cluster mean colors denoted by {KF

n } and {KB
n } respec-

tively. For each node s, the minimum distance from its
color M(s) to the foreground clusters is computed with
dFs = minn ||M(s)−KF

n || and dBs = minn ||M(s)−KB
n ||

for background clusters. The likelihood energy L at each
pixel’s graph node is then:

L(s = F) =
dFs

dFs + dBs
, L(s = B) =

dBs
dFs + dBs

(3)

Edge weight function W is similar to Li et al.’s except
gradient magnitude is used instead of color differences and
an additional factor λ is used for additional smoothness:

W (s, t,M) = λ
1

||Gd
M (s)||+ ε

(4)

with ε = 0.01 and λ = 150. Gd
M is the gradient in the

merged frame M with d set to x or y depending on whether
the edge between s and t is horizontal or vertical. The re-
sulting minimal infill mask for the current object is anal-
ogous to the merged infill mask in the pedestrian removal
case. The final steps are to run the same infilling algorithm
as for pedestrians on the minimal object selection mask and
to repeat this process for all other remaining object selection
regions.

4. Results
We used the described system to remove pedestrians and

objects from various scenes. Figure 4 shows results varying
in pedestrian density, lighting, time of day, and closeness to
the camera demonstrating the effectiveness of the approach.
In contrast to prior work, pedestrians and objects are always
fully removed with no portion of the original region left in
the resulting image.

53

The approach can remove pedestrians under challenging
conditions including dense crowds at intersections (Figure
4b). Objects in untextured regions (Figure 3a) are removed
by sampling and infilling between frames. Highly detailed
regions such as the building ornamentation in Figure 3b are
sampled from other frames for full removal instead of in-
filled to preserve detail. Figure 3c shows full removal of a
large object with limited parallax.

Our system was mostly written in Python. The imple-
mentation is unoptimized though parallelized to take advan-
tage of multicore hardware. The inpainting portion of the
algorithm is in C++ and exposed to Python. During inpaint-
ing, image patches are matched using approximate k-d trees
with FLANN [12]. Additional speedups might be possible
using PatchMatch [1] as well.

Typical scenes with multiple pedestrians and objects take
∼1.5 minutes to process on 2.53Ghz Intel Xeon E5630, not
counting region selection time which depends on the user.
Inpainting is the slowest portion, taking almost half of the
total time. The approach benefits from having extremely
small inpainting regions as a result of the earlier graphcut
segmentation-based steps.

5. Conclusions and future work

We presented an approach to remove pedestrians and ob-
jects from street-level image collections. Collection own-
ers use a gui to select pedestrian and object regions using
high-level operations and without requiring image editing
experience. Multiple frames are used in addition to the se-
lected regions to remove pedestrians and objects completely
from scenes using a graphcut-driven inpainting algorithm.
The approach falls back to pure infilling in large low paral-
lax removal regions and scenes with misregistration or poor
graphcut segmentation.

Users can iteratively experiment with differently shaped
removal regions in the current implementation, though fur-
ther speed improvements are needed to achieve real-time
removal. Frame registration and k-d trees can be precalcu-
lated or computed while users select image removal regions.
Registered frames can be used to suggest removal regions
based on image differences. Pedestrian and object selection
can be sped up using Lazy Snapping [11] to guide mask
selection. Frame matched rotoscoping can be used to prop-
agate selected regions across multiple frames with minimal
additional work from users when removing pedestrians and
objects from sequences.

References

[1] C. Barnes, E. Shechtman, A. Finkelstein, and D. B.
Goldman. PatchMatch: A randomized correspon-
dence algorithm for structural image editing. ACM

Transactions on Graphics (Proc. SIGGRAPH), 28(3),
Aug. 2009. 5

[2] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool.
Speeded-up robust features (SURF). Comput. Vis. Im-
age Underst., 110(3):346–359, June 2008. 2

[3] Y. Boykov and V. Kolmogorov. An experimental com-
parison of min-cut/max-flow algorithms for energy
minimization in vision. In EMMCVPR, pages 359–
374, 2001. 3

[4] F. Chang, C. J. Chen, and C. J. Lu. A linear-time
component-labeling algorithm using contour tracing
technique. Computer Vision and Image Understand-
ing, 93:206–220, 2004. 2

[5] A. Criminisi, P. Perez, and K. Toyama. Region filling
and object removal by exemplar-based image inpaint-
ing. Trans. Img. Proc., 13(9):1200–1212, Sept. 2004.
2, 3

[6] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Clas-
sification (2nd Edition). Wiley Press, New York, 2001.
4

[7] M. A. Fischler and R. C. Bolles. Random sample con-
sensus: a paradigm for model fitting with applications
to image analysis and automated cartography. Com-
mun. ACM, 24(6):381–395, June 1981. 2

[8] A. Flores and S. Belongie. Removing pedestrians
from Google Street View images. In IEEE Interna-
tional Workshop on Mobile Vision, San Francisco, CA,
June 2010. 1

[9] A. Frome, G. Cheung, A. Abdulkader, M. Zennaro,
B. Wu, A. Bissacco, H. Adam, H. Neven, and L. Vin-
cent. Large-scale privacy protection in Google Street
View. In IEEE International Conference on Computer
Vision, 2009. 1

[10] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick.
Graphcut textures: image and video synthesis using
graph cuts. ACM Trans. Graph., 22(3):277–286, July
2003. 2, 3

[11] Y. Li, J. Sun, C.-K. Tang, and H.-Y. Shum. Lazy snap-
ping. ACM Trans. Graph., 23(3):303–308, Aug. 2004.
2, 4, 5

[12] M. Muja and D. G. Lowe. Fast approximate nearest
neighbors with automatic algorithm configuration. In
International Conference on Computer Vision Theory
and Application (VISSAPP’09), pages 331–340. IN-
STICC Press, 2009. 5

[13] C. Rother, V. Kolmogorov, and A. Blake. Grabcut:
interactive foreground extraction using iterated graph
cuts. ACM Trans. Graph., 23(3):309–314, Aug. 2004.
2

54

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4. Pedestrian removal results.

55

