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Abstract. Mobile virtual environments, with real-time 3D and 2D graphics, are 
now possible on smart phone and other camera-enabled devices. Using 
computer vision, the camera sensor can be treated as an input modality in 
applications by analyzing the incoming live video. We present our tracking 
algorithm and several mobile virtual environment and gaming prototypes 
including: a 3D first person shooter, a 2D puzzle game and a simple action 
game. Camera-based interaction provides a user experience that is not possible 
through traditional means, and maximizes the use of the limited display size. 

Keywords: camera-based interaction, virtual environment, mobile device, 
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1   Introduction 

Recent advances in mobile device hardware have made it possible to create mobile 
virtual and mixed reality environments. It is now possible to align real images 
spatially with synthetic content in real time [6]. However, to be suitable for real-world 
applications, key interaction limitations remain, including: a small physical display 
size, precise registration of virtual content with the real environment, and intuitive 
user input techniques. 

Mobile devices currently support interaction through a joystick or a set of standard 
keys. Although these modalities are sufficient for simple modes of interaction, more 
intuitive interaction techniques are needed for mixed reality and virtual environment 
systems. For a greater degree of immersion, better tracking is essential. 

To address these limitations, we present our interaction technique for camera-
equipped mobile devices, using the camera sensor as an input device [5]. Our solution 
is based on analyzing the series of live input images from the camera and estimating 
the motion of the device. We apply our approach to some of the most interactive 
application scenarios: navigation and gesture-based interaction in highly interactive 
3D virtual environments. 

While previous work has created 3D and augmented reality game genres that map 
left/right/up/down camera motions to those exact motions in a game, our work also 
allows for gesture recognition using the camera’s egomotion. For example, a 
character can be  made to jump by shaking the mobile device; our approach 



recognizes the shaking gesture and maps it to a jump action. In addition, camera 
motion can be mapped to 3D viewing. This is particularly useful on mobile devices 
where a limited number of buttons and limited display size make the creation of an 
immersive gaming experience difficult. By mapping physical motion to 3D viewing 
transformations in a first-person game, the user has a more immersive experience with 
no additional hardware or sensors required. 

 

 
Figure 1: A 3D virtual environment. The user can move the device up, down, left and right to 
look around the space. Mapping physical motion to viewing direction in the space creates the 
illusion of a small window into an environment that surrounds the user. 

2. Related Work 

Our work is similar to that of Moehring et al. [6], where a 3D model was overlaid on 
live video captured by a smart phone’s on-board camera viewing a set of markers 
used to capture orientation. Our work does not overlay graphics on video, rather video 
is analyzed without user-introduced tracking features to determine 2D ego-motion 
instead of full 3D camera pose. The scroll [8] and peephole [9] displays works are 
also related as their goals were to estimate 2D device motion towards the creation of 
more intuitive user interaction. While additional sensors were required in these works, 
such as mechanical and ultrasonic sensors, we use only the camera as our direction 
sensor. Doing so allows regular camera-equipped smart phones to have an additional 
interaction modality without modifying the phone hardware. 

Camera-based user interaction has been used in games in several commercial 
works. The most successful mixed reality platform for gaming presently is Sony’s 
Eyetoy [1], which consists of a 60 fps camera attached to a Sony Playstation 2 game 
console. Incoming video is analyzed to estimate a player’s motion and to segment 
them from their environment. Our work has similar goals, but is focused on the 
mobile domain where hardware constraints are more significant. In the mobile 
domain, a number of mixed reality games are currently available. These range from 
camera-movement tracking for moving on-screen crosshairs to simple body part 
region tracking. Mobile games in this category include: Ghostblaster by Futurice Oy, 
Bitside GmbH’s “HyperSpace Invasion” and “Marble Revolution”. These are all 
similar in concept in that the camera can be moved horizontally and vertically to 



move an on-screen cursor. Camera motions are directly mapped to in-game actions 
but with no gesture recognition or mapping to 3D interaction as in our work. 

Related camera-based tracking work includes the Mozzies game available for the 
Siemens SX1 mobile phone. While camera motion is indeed estimated in these games 
to translate sprites accordingly, it should be noted that the detected motion does not 
need to be exact as the sprites are rendered on top of the video but not attached to any 
feature. As such, only approximate motion tracking is used. Since our tracked motion 
needs to match the user’s physical motion more precisely, a higher degree of accuracy 
is required which from our testing is not present in current commercial camera motion 
tracking-based games. It should also be noted that in these works, only mobile camera 
motion is used as input; in our work we use the magnitude of the motion and shake 
detection as well. 

Rohs et al. [7] perform tracking based on dividing incoming camera frames into 
blocks and determine how the blocks move given a set of discrete possible 
translations and rotations. Our algorithm is instead based on tracking individual 
corner-like features observed in the entire camera frames. This allows our tracker to 
recognize sudden camera movements of arbitrary size, as long as some of the features 
from the previous frame are still visible, at the trade-off of not detecting rotations. 
Kalman filter based camera motion estimation was demonstrated by Hannuksela et al. 
[4]. The Kalman tracker has higher motion estimation accuracy, as expected, since 
Kalman filtering greatly improves the quality of intra-frame matching. However, the 
computational requirements are significantly greater since several matrix 
multiplications and inversions are needed per frame. On devices with limited 
computational resources, our algorithm provides sufficient motion and velocity 
accuracy for user interaction, freeing computational power for intensive tasks such as 
collision detection and animation computations, at the trade-off of more limited 
accuracy, since the temporal filtering in our algorithm cannot match a Kalman filter. 

3. Camera-Based Tracking 

Our approach is to use the mobile phone’s on-board camera as the source of input. 
The user’s physical movement of the device is captured in incoming video, which is 
analyzed to determine scroll direction and magnitude. The detected direction is sent to 
the phone’s UI event handler exactly as a corresponding mouse event. 

3.1. Tracking Algorithm 

Our tracking system was implemented on the Symbian OS. We use a feature-based 
tracking algorithm that determines how corner-like features have moved between the 
previous frame and the current frame. Finding corner-like features is difficult because 
traditional corner detectors are too computationally complex for real-time 
performance in gaming. Edges are easier to detect, however they are not temporally 
coherent. Instead, edge information in the x and y direction is combined to find 
corner-like features. The sum of the absolute values of the x and y derivatives, 
otherwise known as the Sobel operator, provides a practical estimate of corners. All 



corners cannot be detected using the Sobel operator; however, it provides a useful 
first-step culling of pixels for additional processing. 

Our algorithm is as follows. Frame n is filtered using the Sobel x and y filters. The 
50 strongest features per frame are found and the motion of each is estimated using 
template matching. 15x15 search windows are used to find the features in the next 
frame since this size is sufficient to capture visually distinct regions and significant 
intra-frame motion. Once the relative movement direction is determined per feature, 
the sum of features that have moved in the up, down, left and right directions is 
totaled to remove temporal inconsistencies. Every 4 frames, the direction with the 
maximum count is used as the overall camera motion estimate. Since the tracker 
typically performs at 12 frames per second, the direction estimate is updated several 
times per second. This is the only temporal filtering needed since the features are 
robust. The direction estimation fails if at least one feature from the previous frame is 
not visible in the next frame, which we have not observed in our experiments in 
various indoor and outdoor environments. In practice, the tracked motion is smooth 
and amenable for viewpoint selection in virtual environments, especially since the 
tracker is not computationally expensive. 

3.2. Shake Detection 

We use motion history images (MHI) [3] to recognize camera shake gestures since 
MHIs were originally created for action and gesture recognition. MHIs capture 
motion histories of image sequences in a single grayscale image which can be 
processed to perform simple, computationally inexpensive gesture recognition.  

MHIs are computed by performing background subtraction between the current 
and previous frames of a video sequence. At locations where the pixel values change, 
the MHI is updated by decrementing by a pre-defined constant amount. In this 
manner, the MHI compactly captures the variations of pixel differences at locations in 
the image across time. By averaging the intensity values of the MHI, the average 
camera motion magnitude can be estimated. The average camera motion can then be 
used to detect large, sudden movements or shaking of the device quite reliably and 
computationally inexpensively. 

 
 
 
 



 
Figure 2. Our tracker uses the current and previous frame captured by the camera for tracking. 
Corner like features are detected in the new frame which are matched with the features found in 
the prior frame so that the prior frame does not have to be reprocessed for features. Direction 
estimates are accumulated for a number of frames before a movement direction estimate is 
made. 

 

 
Figure 3:  Feature detection and tracking to estimate 2D camera egomotion. Red pixels are 
features detected in the current frame, green pixels are features detected in the previous frame 
(leftward motion shown). The motion of individual features is aggregated to determine global 
egomotion. 

4. Mapping Motion to 3D Interaction 

Creating an immersive 3D experience is difficult on mobile devices due to the limited 
display size. The most immersive experiences are typically created using a 
combination of large displays reducing peripheral vision as much as possible and/or 
virtual environment navigation tied to the user’s physical motion. In our prototype 
(Figure 1), we map the user’s physical motion to the viewpoint to create the illusion 
of a window into a 3D world. We have used the tracking and shake recognition 
algorithms presented to create several mobile 3D game prototypes. In each case, using 
the camera as the input modality created a user experience not achievable with 
traditional keypad based input.  



Our renderer loads standard Quake III (tm) or Quake III Arena (tm) maps. The 
rendering is done using the OpenGL ES implementation available on Series 60 based 
mobile devices. Pre-computed vertex lighting and fixed point calculations are used to 
improve performance due to the lack of a floating-point unit on our test hardware, a 
standard Nokia 6630 smart phone. The renderer is able to render realistically lit 
virtual environments with several thousand polygons per scene at 5-10 frames per 
second, depending on the environment that is used. 

Interaction with the virtual environment is performed with a combination of 
physical motion and keypad presses. The navigation within the environment is 
controlled by the directional keys on the keypad. For viewpoint selection, the user 
looks around in the scene by physically moving the device in the directions that they 
would like to look. We map the tracked camera motion directions to a trackball as in 
traditional mouse-based 3D interaction. The game actions are mapped to keypad 
presses. In this paper, we do not address 3D object interactions such as picking. 

5. Mapping Motion to 2D Interaction  

Darken et al. [2] have studied 2D and 3D mixed-dimension interaction in virtual 
environments. They have concluded that a hybrid interface, where 3D and 2D 
interaction techniques were matched to each individual task, such as object selection, 
text reading, would be the most preferable solution. We consider that camera-based 
input can be used for 2D interactions in the virtual environment, as well as those that 
are 3D. To illustrate real-life applications, we created 2D puzzle and action game 
prototypes to investigate these ideas using the camera motion and shake detection 
algorithms presented. 

We modified the open source Series 60 port of the “Frozen Bubble” puzzle game, 
switching the game control from using the keypad to using the camera (Figure 4). In 
our version, the user moves their mobile device left and right to aim and performs 
sudden shakes to launch their bubble. This has the effect of significantly changing 
game play as careful arm motions are now required to aim, instead of a number of 
button presses. Switching the aiming and launching to be camera-motion based has 
the result of creating a more physically-accurate aiming experience, which increases 
the excitement of the game.  

 
 
 
 
 



 
Figure 4:  A 2D puzzle game. Players move the device left and right to aim, and shake the 
device to launch a bubble. Aiming is more difficult using physical motion than with a keypad, 
creating a more exciting experience. 

We created a camera-based action game prototype as well. Using sprites and 
artwork from Konami’s “Track and Field” game for the Nintendo Entertainment 
System, a new game (Figure 5) was created. A runner must jump over a never-ending 
number of approaching hurdles. To jump, the player must time the shaking of their 
device correctly so that the character does not crash into hurdles. Relying on the 
camera exclusively for input results in a game that is very simple to learn and 
understand but difficult to master. The timing of a button press is easier than that of a 
shake since most button press physical motions are very similar, yet most shaking 
motions are quite different. Consequently, to play well, a player must learn not only 
the timing needed but also how to perform consistent shaking motions for each hurdle 
so that the next shake is timed correctly. We believe this additional level of user 
involvement results in a game that provides richer sensory feedback. 

 
 

 
Figure 5:  A 2D action game. The player's character must jump over the hurdles. A jump 
command is issued by shaking the device at the correct time to avoid tripping on the hurdle. 

Results  

We implemented the tracking algorithm and applications in C++ using the Series 60 
Second Edition Feature Pack 2 SDK. Our test platform was a Nokia 6630 mobile 



phone, which features an ARM 9 220mhz processor, 10 megabytes of RAM, 176x208 
screen resolution, and a 1.3 megapixel camera capable of capturing frames at 15 fps. 

In order to support intuitive and efficient user interaction, it is important to 
understand what kind of information is provided by the tracking algorithm, and what 
the limitations are given the output of the tracking algorithm. The most basic but 
potentially most important input that can be acquired from the tracking algorithm is 
the two dimensional movement of the mobile device on a plane parallel to the camera 
in 3D. With this type of data, the camera can be used as an input device to capture the 
device’s movement in up/down, left/right directions, as well as its speed in each 
direction. Mobile camera-based input has restrictions, primarily due to limitations of 
mobile device hardware. Forward and backward motion cannot be detected with the 
current algorithm, so six degree of freedom movement is not supported yet. 
Forward/backward motion is possible to detect if the algorithm were extended, 
however this would increase computational demands and reduce the frame rate, 
impoverishing the user interaction. 

Physical movement speed is another challenge for camera-based interaction. The 
algorithm must perform all of its video analysis in the time between camera frames 
being captured to support real time interaction. 

Thus, there are implicit limits on the computational complexity of the tracking. In 
addition, there is a fundamental assumption in our algorithm that each frame contains 
some portion of the prior frame. This assumption is motivated by the observation that 
users will typically not move their phones erratically when focused on a task. We 
have also verified our tracking solution in informal experiments and found that it 
works well in practice. Users usually operate mobile phones with one hand. Mobile 
phones can also be used anywhere in an office, school, public, home, etc. Considering 
these environments, there are certain interactions which are not appropriate: 

Precise tasks: Precise motion is very difficult holding a mobile device with one 
hand. Interaction should not require operations like ’move the device 2.5cm up’, or 
’move the device 34 degrees from the horizontal line.’ As a result, camera-based 
interaction will probably be most useful when navigating large amounts of data, or 
zoom level dependent data. 

Large motion: This restriction is more serious in some environments, such as in 
crowded public locations. In such situations, it may be advantageous to provide a 
‘clutch’ to turn the tracking on/off. This would emulate the act of lifting a mouse once 
the edge of a desk is reached in traditional desktop interaction. In our informal testing 
we did not provide a clutch, however in commercial implementations this is a 
consideration to keep in mind. 

Extended and/or frequent interaction: Using single handed operation, interactions 
that require extended time and/or frequent movement may fatigue users. 

Our approach works best with coarse selections at different speeds and scales of 
data. It is critical that visual feedback follows physical motion and that the feedback 
differs according to motion speed, in order to provide an intuitive user experience. 
The most typical use case is moving the device to scroll UI content such as a list or a 
document.  



Conclusions 

We introduced a new approach to improve the user experience for interacting with 
virtual environments on mobile devices. A computer vision-based tracking algorithm 
was presented to detect both physical motion direction and gestures to permit one-
handed physical movement based interaction. A camera was chosen since cameras are 
now widely available on mobile devices and are very powerful sensors that can be 
used without introducing new sensors. 

We demonstrated our approach in 2D and 3D interaction. In the future, we would 
like to collect user feedback to determine how to improve user interaction further 
using mobile cameras. While we applied the camera-based interaction to only 
viewpoint selections and simple gestures, we would like to investigate its application 
to navigation, object interactions, and avatar control. 

While our tracking algorithm is computationally efficient and works well in 
practice, there are some situations that cannot be handled. Severe lighting differences 
will cause the template matching to stop working properly. Motion in front of the 
camera is ambiguous and can affect tracking results as it is impossible to tell whether 
the camera is moving or not without either significantly more expensive computations 
or other sensors. Shadows may confuse the tracking system, but there are known 
computer vision techniques for robust tracking in the presence of shadows that will be 
incorporated into the tracking algorithm once additional processing speed is available. 
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