
Camera-Based Virtual Environment Interaction on
Mobile Devices

Tolga Çapın1, Antonio Haro2, Vidya Setlur3, Stephen Wilkinson4

1 Bilkent University, tcapin@cs.bilkent.edu.tr
2 D4D Technologies, mail@antonioharo.com

3 Nokia, vidya.setlur@nokia.com
4 Texas Instruments, stephen.wilkinson@ti.com

Abstract. Mobile virtual environments, with real-time 3D and 2D graphics, are
now possible on smart phone and other camera-enabled devices. Using
computer vision, the camera sensor can be treated as an input modality in
applications by analyzing the incoming live video. We present our tracking
algorithm and several mobile virtual environment and gaming prototypes
including: a 3D first person shooter, a 2D puzzle game and a simple action
game. Camera-based interaction provides a user experience that is not possible
through traditional means, and maximizes the use of the limited display size.

Keywords: camera-based interaction, virtual environment, mobile device,
computer vision.

1 Introduction

Recent advances in mobile device hardware have made it possible to create mobile
virtual and mixed reality environments. It is now possible to align real images
spatially with synthetic content in real time [6]. However, to be suitable for real-world
applications, key interaction limitations remain, including: a small physical display
size, precise registration of virtual content with the real environment, and intuitive
user input techniques.

Mobile devices currently support interaction through a joystick or a set of standard
keys. Although these modalities are sufficient for simple modes of interaction, more
intuitive interaction techniques are needed for mixed reality and virtual environment
systems. For a greater degree of immersion, better tracking is essential.

To address these limitations, we present our interaction technique for camera-
equipped mobile devices, using the camera sensor as an input device [5]. Our solution
is based on analyzing the series of live input images from the camera and estimating
the motion of the device. We apply our approach to some of the most interactive
application scenarios: navigation and gesture-based interaction in highly interactive
3D virtual environments.

While previous work has created 3D and augmented reality game genres that map
left/right/up/down camera motions to those exact motions in a game, our work also
allows for gesture recognition using the camera’s egomotion. For example, a
character can be made to jump by shaking the mobile device; our approach

recognizes the shaking gesture and maps it to a jump action. In addition, camera
motion can be mapped to 3D viewing. This is particularly useful on mobile devices
where a limited number of buttons and limited display size make the creation of an
immersive gaming experience difficult. By mapping physical motion to 3D viewing
transformations in a first-person game, the user has a more immersive experience with
no additional hardware or sensors required.

Figure 1: A 3D virtual environment. The user can move the device up, down, left and right to
look around the space. Mapping physical motion to viewing direction in the space creates the
illusion of a small window into an environment that surrounds the user.

2. Related Work

Our work is similar to that of Moehring et al. [6], where a 3D model was overlaid on
live video captured by a smart phone’s on-board camera viewing a set of markers
used to capture orientation. Our work does not overlay graphics on video, rather video
is analyzed without user-introduced tracking features to determine 2D ego-motion
instead of full 3D camera pose. The scroll [8] and peephole [9] displays works are
also related as their goals were to estimate 2D device motion towards the creation of
more intuitive user interaction. While additional sensors were required in these works,
such as mechanical and ultrasonic sensors, we use only the camera as our direction
sensor. Doing so allows regular camera-equipped smart phones to have an additional
interaction modality without modifying the phone hardware.

Camera-based user interaction has been used in games in several commercial
works. The most successful mixed reality platform for gaming presently is Sony’s
Eyetoy [1], which consists of a 60 fps camera attached to a Sony Playstation 2 game
console. Incoming video is analyzed to estimate a player’s motion and to segment
them from their environment. Our work has similar goals, but is focused on the
mobile domain where hardware constraints are more significant. In the mobile
domain, a number of mixed reality games are currently available. These range from
camera-movement tracking for moving on-screen crosshairs to simple body part
region tracking. Mobile games in this category include: Ghostblaster by Futurice Oy,
Bitside GmbH’s “HyperSpace Invasion” and “Marble Revolution”. These are all
similar in concept in that the camera can be moved horizontally and vertically to

move an on-screen cursor. Camera motions are directly mapped to in-game actions
but with no gesture recognition or mapping to 3D interaction as in our work.

Related camera-based tracking work includes the Mozzies game available for the
Siemens SX1 mobile phone. While camera motion is indeed estimated in these games
to translate sprites accordingly, it should be noted that the detected motion does not
need to be exact as the sprites are rendered on top of the video but not attached to any
feature. As such, only approximate motion tracking is used. Since our tracked motion
needs to match the user’s physical motion more precisely, a higher degree of accuracy
is required which from our testing is not present in current commercial camera motion
tracking-based games. It should also be noted that in these works, only mobile camera
motion is used as input; in our work we use the magnitude of the motion and shake
detection as well.

Rohs et al. [7] perform tracking based on dividing incoming camera frames into
blocks and determine how the blocks move given a set of discrete possible
translations and rotations. Our algorithm is instead based on tracking individual
corner-like features observed in the entire camera frames. This allows our tracker to
recognize sudden camera movements of arbitrary size, as long as some of the features
from the previous frame are still visible, at the trade-off of not detecting rotations.
Kalman filter based camera motion estimation was demonstrated by Hannuksela et al.
[4]. The Kalman tracker has higher motion estimation accuracy, as expected, since
Kalman filtering greatly improves the quality of intra-frame matching. However, the
computational requirements are significantly greater since several matrix
multiplications and inversions are needed per frame. On devices with limited
computational resources, our algorithm provides sufficient motion and velocity
accuracy for user interaction, freeing computational power for intensive tasks such as
collision detection and animation computations, at the trade-off of more limited
accuracy, since the temporal filtering in our algorithm cannot match a Kalman filter.

3. Camera-Based Tracking

Our approach is to use the mobile phone’s on-board camera as the source of input.
The user’s physical movement of the device is captured in incoming video, which is
analyzed to determine scroll direction and magnitude. The detected direction is sent to
the phone’s UI event handler exactly as a corresponding mouse event.

3.1. Tracking Algorithm

Our tracking system was implemented on the Symbian OS. We use a feature-based
tracking algorithm that determines how corner-like features have moved between the
previous frame and the current frame. Finding corner-like features is difficult because
traditional corner detectors are too computationally complex for real-time
performance in gaming. Edges are easier to detect, however they are not temporally
coherent. Instead, edge information in the x and y direction is combined to find
corner-like features. The sum of the absolute values of the x and y derivatives,
otherwise known as the Sobel operator, provides a practical estimate of corners. All

corners cannot be detected using the Sobel operator; however, it provides a useful
first-step culling of pixels for additional processing.

Our algorithm is as follows. Frame n is filtered using the Sobel x and y filters. The
50 strongest features per frame are found and the motion of each is estimated using
template matching. 15x15 search windows are used to find the features in the next
frame since this size is sufficient to capture visually distinct regions and significant
intra-frame motion. Once the relative movement direction is determined per feature,
the sum of features that have moved in the up, down, left and right directions is
totaled to remove temporal inconsistencies. Every 4 frames, the direction with the
maximum count is used as the overall camera motion estimate. Since the tracker
typically performs at 12 frames per second, the direction estimate is updated several
times per second. This is the only temporal filtering needed since the features are
robust. The direction estimation fails if at least one feature from the previous frame is
not visible in the next frame, which we have not observed in our experiments in
various indoor and outdoor environments. In practice, the tracked motion is smooth
and amenable for viewpoint selection in virtual environments, especially since the
tracker is not computationally expensive.

3.2. Shake Detection

We use motion history images (MHI) [3] to recognize camera shake gestures since
MHIs were originally created for action and gesture recognition. MHIs capture
motion histories of image sequences in a single grayscale image which can be
processed to perform simple, computationally inexpensive gesture recognition.

MHIs are computed by performing background subtraction between the current
and previous frames of a video sequence. At locations where the pixel values change,
the MHI is updated by decrementing by a pre-defined constant amount. In this
manner, the MHI compactly captures the variations of pixel differences at locations in
the image across time. By averaging the intensity values of the MHI, the average
camera motion magnitude can be estimated. The average camera motion can then be
used to detect large, sudden movements or shaking of the device quite reliably and
computationally inexpensively.

Figure 2. Our tracker uses the current and previous frame captured by the camera for tracking.
Corner like features are detected in the new frame which are matched with the features found in
the prior frame so that the prior frame does not have to be reprocessed for features. Direction
estimates are accumulated for a number of frames before a movement direction estimate is
made.

Figure 3: Feature detection and tracking to estimate 2D camera egomotion. Red pixels are
features detected in the current frame, green pixels are features detected in the previous frame
(leftward motion shown). The motion of individual features is aggregated to determine global
egomotion.

4. Mapping Motion to 3D Interaction

Creating an immersive 3D experience is difficult on mobile devices due to the limited
display size. The most immersive experiences are typically created using a
combination of large displays reducing peripheral vision as much as possible and/or
virtual environment navigation tied to the user’s physical motion. In our prototype
(Figure 1), we map the user’s physical motion to the viewpoint to create the illusion
of a window into a 3D world. We have used the tracking and shake recognition
algorithms presented to create several mobile 3D game prototypes. In each case, using
the camera as the input modality created a user experience not achievable with
traditional keypad based input.

Our renderer loads standard Quake III (tm) or Quake III Arena (tm) maps. The
rendering is done using the OpenGL ES implementation available on Series 60 based
mobile devices. Pre-computed vertex lighting and fixed point calculations are used to
improve performance due to the lack of a floating-point unit on our test hardware, a
standard Nokia 6630 smart phone. The renderer is able to render realistically lit
virtual environments with several thousand polygons per scene at 5-10 frames per
second, depending on the environment that is used.

Interaction with the virtual environment is performed with a combination of
physical motion and keypad presses. The navigation within the environment is
controlled by the directional keys on the keypad. For viewpoint selection, the user
looks around in the scene by physically moving the device in the directions that they
would like to look. We map the tracked camera motion directions to a trackball as in
traditional mouse-based 3D interaction. The game actions are mapped to keypad
presses. In this paper, we do not address 3D object interactions such as picking.

5. Mapping Motion to 2D Interaction

Darken et al. [2] have studied 2D and 3D mixed-dimension interaction in virtual
environments. They have concluded that a hybrid interface, where 3D and 2D
interaction techniques were matched to each individual task, such as object selection,
text reading, would be the most preferable solution. We consider that camera-based
input can be used for 2D interactions in the virtual environment, as well as those that
are 3D. To illustrate real-life applications, we created 2D puzzle and action game
prototypes to investigate these ideas using the camera motion and shake detection
algorithms presented.

We modified the open source Series 60 port of the “Frozen Bubble” puzzle game,
switching the game control from using the keypad to using the camera (Figure 4). In
our version, the user moves their mobile device left and right to aim and performs
sudden shakes to launch their bubble. This has the effect of significantly changing
game play as careful arm motions are now required to aim, instead of a number of
button presses. Switching the aiming and launching to be camera-motion based has
the result of creating a more physically-accurate aiming experience, which increases
the excitement of the game.

Figure 4: A 2D puzzle game. Players move the device left and right to aim, and shake the
device to launch a bubble. Aiming is more difficult using physical motion than with a keypad,
creating a more exciting experience.

We created a camera-based action game prototype as well. Using sprites and
artwork from Konami’s “Track and Field” game for the Nintendo Entertainment
System, a new game (Figure 5) was created. A runner must jump over a never-ending
number of approaching hurdles. To jump, the player must time the shaking of their
device correctly so that the character does not crash into hurdles. Relying on the
camera exclusively for input results in a game that is very simple to learn and
understand but difficult to master. The timing of a button press is easier than that of a
shake since most button press physical motions are very similar, yet most shaking
motions are quite different. Consequently, to play well, a player must learn not only
the timing needed but also how to perform consistent shaking motions for each hurdle
so that the next shake is timed correctly. We believe this additional level of user
involvement results in a game that provides richer sensory feedback.

Figure 5: A 2D action game. The player's character must jump over the hurdles. A jump
command is issued by shaking the device at the correct time to avoid tripping on the hurdle.

Results

We implemented the tracking algorithm and applications in C++ using the Series 60
Second Edition Feature Pack 2 SDK. Our test platform was a Nokia 6630 mobile

phone, which features an ARM 9 220mhz processor, 10 megabytes of RAM, 176x208
screen resolution, and a 1.3 megapixel camera capable of capturing frames at 15 fps.

In order to support intuitive and efficient user interaction, it is important to
understand what kind of information is provided by the tracking algorithm, and what
the limitations are given the output of the tracking algorithm. The most basic but
potentially most important input that can be acquired from the tracking algorithm is
the two dimensional movement of the mobile device on a plane parallel to the camera
in 3D. With this type of data, the camera can be used as an input device to capture the
device’s movement in up/down, left/right directions, as well as its speed in each
direction. Mobile camera-based input has restrictions, primarily due to limitations of
mobile device hardware. Forward and backward motion cannot be detected with the
current algorithm, so six degree of freedom movement is not supported yet.
Forward/backward motion is possible to detect if the algorithm were extended,
however this would increase computational demands and reduce the frame rate,
impoverishing the user interaction.

Physical movement speed is another challenge for camera-based interaction. The
algorithm must perform all of its video analysis in the time between camera frames
being captured to support real time interaction.

Thus, there are implicit limits on the computational complexity of the tracking. In
addition, there is a fundamental assumption in our algorithm that each frame contains
some portion of the prior frame. This assumption is motivated by the observation that
users will typically not move their phones erratically when focused on a task. We
have also verified our tracking solution in informal experiments and found that it
works well in practice. Users usually operate mobile phones with one hand. Mobile
phones can also be used anywhere in an office, school, public, home, etc. Considering
these environments, there are certain interactions which are not appropriate:

Precise tasks: Precise motion is very difficult holding a mobile device with one
hand. Interaction should not require operations like ’move the device 2.5cm up’, or
’move the device 34 degrees from the horizontal line.’ As a result, camera-based
interaction will probably be most useful when navigating large amounts of data, or
zoom level dependent data.

Large motion: This restriction is more serious in some environments, such as in
crowded public locations. In such situations, it may be advantageous to provide a
‘clutch’ to turn the tracking on/off. This would emulate the act of lifting a mouse once
the edge of a desk is reached in traditional desktop interaction. In our informal testing
we did not provide a clutch, however in commercial implementations this is a
consideration to keep in mind.

Extended and/or frequent interaction: Using single handed operation, interactions
that require extended time and/or frequent movement may fatigue users.

Our approach works best with coarse selections at different speeds and scales of
data. It is critical that visual feedback follows physical motion and that the feedback
differs according to motion speed, in order to provide an intuitive user experience.
The most typical use case is moving the device to scroll UI content such as a list or a
document.

Conclusions

We introduced a new approach to improve the user experience for interacting with
virtual environments on mobile devices. A computer vision-based tracking algorithm
was presented to detect both physical motion direction and gestures to permit one-
handed physical movement based interaction. A camera was chosen since cameras are
now widely available on mobile devices and are very powerful sensors that can be
used without introducing new sensors.

We demonstrated our approach in 2D and 3D interaction. In the future, we would
like to collect user feedback to determine how to improve user interaction further
using mobile cameras. While we applied the camera-based interaction to only
viewpoint selections and simple gestures, we would like to investigate its application
to navigation, object interactions, and avatar control.

While our tracking algorithm is computationally efficient and works well in
practice, there are some situations that cannot be handled. Severe lighting differences
will cause the template matching to stop working properly. Motion in front of the
camera is ambiguous and can affect tracking results as it is impossible to tell whether
the camera is moving or not without either significantly more expensive computations
or other sensors. Shadows may confuse the tracking system, but there are known
computer vision techniques for robust tracking in the presence of shadows that will be
incorporated into the tracking algorithm once additional processing speed is available.

References

1. Campbell D., Computer Vision in Games, Game Developers Conference 2005.
2. Darken R.P., Durost R., Mixed-dimension interaction in virtual environments. VRST2005:

pp. 38-45.
3. Davis, J.W. and Bobick, A. The Representation and Recognition of Action Using Temporal

Templates, In IEEE International Conference on Computer Vision and Pattern Recognition,
August 1997, pp. 928-934.

4. Hannuksela, J., Sangi, P., and Heikkila, J. A Vision-Based Approach for Controlling User
Interfaces of Mobile Devices. To appear in IEEE Workshop on Vision for Human-Computer
Interaction (V4HCI), 2005.

5. Haro A., Mori K., Capin T., Wilkinson S., Mobile Camera-Based User Interaction.
Proceedings of ICCV-HCI 2005: 79-89.

6. Moehring, M., Lessig, C., and Bimber, O. Video See-Through AR on Consumer Cell
Phones. In Proceedings of ISMAR 2004.

7. Rohs, M. Real-world Interaction with Camera-phones, In 2nd International Symposium on
Ubiquitous Computing Systems (UCS 2004), Tokyo, Japan, November 2004.

8. Siio, I. Scroll Display: Pointing Device for Palm-top Computers, Asia Pacific Computer
Human Interaction 1998 (APCHI 98), Japan, July 15-17, 1998, pp. 243-248.

9. Yee, K-P. Peephole Displays: Pen Interaction on Spatially Aware Handheld Computers, In
Proceedings of CHI’03 Human Factors in Computing Systems, pp. 1-8.

